Monday, November 5, 2018

SKEWNESS







Skewness and its Types
In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive or negative, or undefined. For a unimodal distribution, negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness does not obey a simple rule. For example, a zero value means that the tails on both sides of the mean balance out overall; this is the case for a symmetric distribution, but can also be true for an asymmetric distribution where one tail is long and thin, and the other is short but fat. Many textbooks teach a rule of thumb stating that the mean is right of the median under right skew, and left of the median under left skew. This rule fails with surprising frequency. It can fail in multimodal distributions, or in distributions where one tail is long but the other is heavy. Most commonly, though, the rule fails in discrete distributions where the areas to the left and right of the median are not equal.
Types of skewness
Consider the two distributions in the figure just below. Within each graph, the values on the right side of the distribution taper differently from the values on the left side. These tapering sides are called tails, and they provide a visual means to determine which of the two kinds of skewness a distribution has:
Negative skew. The left tail is longer; the mass of the distribution is concentrated on the right of the figure. The distribution is said to be left-skewedleft-tailed, or skewed to the left, despite the fact that the curve itself appears to be skewed or leaning to the right; left instead refers to the left tail being drawn out and, often, the mean being skewed to the left of a typical center of the data. A left-skewed distribution usually appears as a right-leaning curve.
Positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the figure. The distribution is said to be right-skewedright-tailed, or skewed to the rightdespite the fact that the curve itself appears to be skewed or leaning to the left; right instead refers to the right tail being drawn out and, often, the mean being skewed to the right of a typical center of the data. A right-skewed distribution usually appears as a left-leaning curve.
Figure 1 shows positive and negative skew

skewness,(sk) =      = 3(M-MD)/SD

 
 table1 shows the difference between the mean, median and mode in distribution
If mean –mode>0(positive)           the distribution is skewed to the right or positively skewed
If mean –mode >0(negative)          the distribution is skewed to the left or negatively skewed
If mean –mode =0(symmetrical)     the distribution is symmetrical







No comments:

Post a Comment

SKEWNESS

Skewness and its Types In probability theory and  statisti cs , skewness is a measure of the asymmetry of the  probabili...